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Abstract At the nanoscale a number of very high frequency oscillating systems
involving relative motion with respect to a carbon nanotube have been identified. In
this paper, we study the two-body systems of an atom and a fullerene C60 orbit-
ing around a single infinitely long carbon nanotube and a fullerene C60 orbiting
around a fullerene C1500. The van der Waals interaction forces are modeled using the
Lennard–Jones potential together with the continuum approach for which carbon
atoms are assumed to be uniformly distributed over the surfaces of both the fullerenes
and the carbon nanotube. Some analytical and perturbation solutions are obtained for
the regime where the attractive term of the potential energy dominates. Certain circu-
lar orbiting radii of these nanoscale systems are estimated using a stability argument
and the corresponding circular orbiting frequencies can then be calculated by inves-
tigating the minimum energy configuration of their effective potential energies. We
find that the circular orbiting frequencies of the various proposed nano-systems are
in the gigahertz range. Finally, the classification of their orbiting paths is determined
numerically.
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1 Introduction

The discovery of carbon nanotubes [1] has led to many theoretical, computational and
experimental studies on their properties and various ways to create new possible car-
bon nanotube based devices. One such device is the nanoscale oscillator, for which the
oscillation of a carbon molecule (a fullerene C60 or a carbon nanotube) inside a carbon
nanotube can generate frequencies in the gigahertz range. The concept of nanoscale
oscillators is based upon the experiments of Cumings and Zettl [2] on multi-walled
carbon nanotubes, where they remove the cap from one end of the outer shell and
attach a moveable nanomanipulator to the core in a high-resolution transmission elec-
tron microscope. By pulling the core out and pushing it back into the outer shell, they
report an ultra-low sliding frictional force, which is also confirmed by Yu et al. [3].
Further, Cumings and Zettl [2] observe that the extruded core, after release, quickly
and fully retracts inside the outer shell due to the restoring force resulting from the van
der Waals interaction acting on the extruded core. These experimental results led to
the molecular dynamics studies of Zheng and Jiang [4] who show that the oscillating
of the inner shell between the open ends of the outer shell of a multi-walled carbon
nanotube generates a frequency in the gigahertz range. Molecular dynamics simula-
tions undertaken by Legoas et al. [5], Rivera et al. [6,7] and others also confirm such
gigahertz frequency phenomena. In terms of a mathematical modelling perspective,
Baowan and Hill [8] investigate the force distribution for a double-walled carbon nano-
tube oscillator by utilizing the continuum approach for the Lennard–Jones potential
together with Newton’s second law assuming a frictionless environment. They obtain
an analytical expression for the interaction force and their model also predicts the
gigahertz oscillatory behavior for the double-walled carbon nanotube oscillators.

Further, Zheng and Jiang [4] suggest that the oscillatory frequency increases as the
inner oscillating tube becomes shorter. This result leads to the molecular dynamics
study of Liu et al. [9] on the oscillation of a C60 fullerene inside a single-walled carbon
nanotube. While Liu et al. [9] focus on the oscillation frequency, the study of Qian
et al. [10] concerns the suction and the repulsion of a C60 molecule at the vicinity of the
tube’s open end and the velocity of the molecule after being sucked into the nanotube.
Based on the molecular dynamics simulations of both Liu et al. [9] and Qian et al. [10],
Cox et al. [11,12] develop a mathematical model employing fundamental mechanical
principles and classical applied mathematical techniques to determine the acceptance
condition and the suction energies of the C60 fullerene upon entering a nanotube. They
determine the minimum radius of a carbon nanotube for which the C60 fullerene will
be accepted from rest and the maximum total energy once the C60 molecule is sucked
inside the nanotube by the van der Waals forces. In addition, Cox et al. [11,12] show
that the gigahertz oscillating behavior arises from the two peak-like forces operating at
the nanotube’s open ends. The analytical model of Cox et al. [11,12] is also extended
to examine a more complicated structure of the gigahertz oscillators, including the
nanotube bundle oscillators for which the oscillating molecule inside the bundle is
either a single nanotube or a C60 fullerene [13,14].

For other types of nanoscale oscillators, Hilder and Hill [15,16] find that the giga-
hertz frequencies can also be obtained from a sector of a nanotorus orbiting inside a
carbon nanotorus and an atom and a C60 fullerene orbiting inside a nanotorus. In this
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paper, we further investigate orbiting phenomenon at the nanoscale. In particular, we
consider an atom and a C60 fullerene orbiting around the outside a carbon nanotube
and also a C60 fullerene orbiting around a C1500 molecule. The van der Waals inter-
action energy is modelled using the 6–12 Lennard–Jones potential and the continuum
approach for which we assume a uniform distribution of carbon atoms on the sur-
faces of the carbon nanotube and the fullerene. We find that the interacting molecules
move relatively with respect to each other under the influence of their mutual central
force. While their loci cannot be integrated in terms of well-known special functions,
they can be determined by the numerical evaluation of certain integrals. Some analyt-
ical and perturbation solutions are sought, where the attractive forces dominate and
assuming that the total energies of both the atom and the fullerene are small, and these
special analytical results provide some insight into suitable forms of the loci. Finally,
the circular radii are estimated by finding the minimum energy configuration of their
effective potential energies, and a stability analysis is employed to ensure the stability
of the circular radii, which is of practical importance in creating certain nano-devices.
For all cases, the circular orbiting frequencies reach the gigahertz range. We com-
ment that this paper ignores any thermal fluctuations arising from the environment. If
such effects are incorporated, the orbiting motion of these systems may be critically
disrupted and the orbiting phenomenon might not be observed.

The paper is structured as follows. In the following section, we give the basic
equations of motion for a two-body problem. In Sects. 3 to 5, an atom–carbon nano-
tube system, a fullerene–carbon nanotube system and a fullerene–fullerene system are
examined, respectively. For all cases, the classification of their loci, in terms of both
numerical and analytical investigations is given, and their circular orbiting frequencies
are provided.

2 Equations of motion

In this section, a brief description of the equations of motion for a two-body prob-
lem is presented. A more detailed derivation and explanation can be found in many
classical mechanics graduate textbooks, such as [17]. For a system of two objects, the
connecting potential energy V (r) depends only on the relative displacement between
the two objects r = r2 − r1, where r1 and r2 denote the position vectors of the two
masses m1 and m2 relative to their center of mass respectively (it is essential for a
central force problem that the potential energy between two bodies depends only on r).
Thus, let P denote the position vector of the center of mass and the Lagrangian for
the two-body problem is defined by

L = T ( Ṗ, ṙ) − V (r), (1)

where T and V denote the kinetic and the potential energies respectively. The total
kinetic energy T can be expressed as the sum of the kinetic energy owing to the motion
of the center of mass and the kinetic energy owing to the motion about the center of
mass. That is,
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T = 1

2
M Ṗ

2 + 1

2
m1 ṙ1

2 + 1

2
m2 ṙ2

2, (2)

where M = m1 + m2 is the total mass of the two-body system. The two position
vectors can then be related to the relative displacement vector r by

r1 = − m2

m1 + m2
r, r2 = m1

m1 + m2
r, (3)

which upon substituting Eqs. 3 and 2 into Eq. 1, the Lagrangian can be rewritten as

L = 1

2
M Ṗ2 + 1

2
m ṙ2 − V (r), (4)

where m = m1m2/(m1 +m2) is called the reduced mass of the system. Therefore, the
two-body problems can always be reduced to the reduced mass m, moving about the
center of mass of the system as is incorporated in Eq. 4. If we assume V (r) = V (r)

and express the Lagrangian in terms of polar coordinates, then Eq. 4 becomes

L = 1

2
m(ṙ2 + r2θ̇2) − V (r), (5)

and the angular momentum of the system is obtained from L by p = ∂L/∂θ̇ = mr2θ̇ .
Without any external torque, it is known that the angular momentum of the system is
conserved, so that

h = mr2θ̇ , (6)

where h denotes an arbitrary constant. Finally, the total energy E is given by

E = 1

2
m(ṙ2 + r2θ̇2) + V (r) = 1

2
mṙ2 + h2

2mr2 + V (r) = 1

2
mṙ2 + Vef f (r), (7)

where Vef f (r) = h2/2mr2 + V (r) denotes the effective potential energy, which
comprises both the angular kinetic energy h2/2mr2 and the potential energy V (r).
A circular orbit of radius R can be computed by finding the minimum energy config-
uration of Vef f .

3 Atom–carbon nanotube system

In this section, we investigate a single carbon atom orbiting around a thin infinitely
long carbon nanotube, approximated by a line, under the influence of the van der Waals
force. Using the 6–12 Lennard–Jones potential and the continuum approach, the
van der Waals interaction energy of this system is given by

V (ρ) = ng

∫ ∞

−∞

(−A

ρ6 + B

ρ12

)
dz, (8)
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Table 1 Numerical values of
constants used in the model Radius of (6,6) a = 4.071 Å

Radius of C60 b = 3.55 Å

Radius of C1500 c = 17.5225Å

Carbon–carbon bond length σ = 1.421 Å

Mean surface density of a single ng = 0.3812 Å−2

layer graphene

Mean surface density of C60 n1 = 0.3789 Å−2

Mean surface density of C1500 n2 = 0.3888 Å−2

Mass of a single carbon atom ma = 1.993 × 10−26 kg

Mass of a single C60 fullerene m1 = 1.196 × 10−24 kg

Mass of a single C1500 fullerene m2 = 2.9895 × 10−23 kg

Attractive constant A = 17.4 eV Å6

Repulsive constant B = 29 × 103 eV Å12

Fig. 1 Atom–carbon nanotube
system

mr

z

dz

z

r

ρ

Carbon atom

carbon nanotube

A small segment of the carbon nanotube 

where A and B are the attractive and repulsive constants, respectively, ρ denotes the
distance between the orbiting atom and an arbitrary atom on the carbon nanotube, and
ng is the mean surface density of atoms on the carbon nanotube. The numerical values
of the constants used throughout this paper are presented in Table 1.

From Fig. 1, we have ρ2 = z2 + r2 so that the molecular potential energy V (r) can
be expressed as

V (r) = ng

∫ ∞

−∞

{ −A

(z2 + r2)3 + B

(z2 + r2)6

}
dz, (9)

which upon making the substitution z = r tan θ , Eq. 9 becomes
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Fig. 2 Comparison between angular kinetic energy, molecular potential energy and effective potential
energy for atom–carbon nanotube system

V (r) = ng

∫ π/2

−π/2

{
− A

r5
cos4 θ + B

r11 cos10 θ

}
dθ = − A′

r5
+ B ′

r11 , (10)

where A′ = 3πng A/8 = 7.8 eV Å4 and B ′ = 63πng B/256 = 8547 eV Å10 are the
modified attractive and repulsive constants respectively. This potential energy is illus-
trated graphically in Fig. 2. According to Eq. 7, the effective potential energy Vef f (r)

is given by

Vef f (r) = C ′

r2 − A′

r5
+ B ′

r11 , (11)

where C ′ = h2/2m. The extra term C ′/r2 corresponds to the atom’s angular kinetic
energy. The classification of the atom’s loci can then be obtained by analyzing the
total energy of the system, which from Eqs. 7 and 11 becomes

E = 1

2
mṙ2 +

(
C ′

r2 − A′

r5
+ B ′

r11

)
, (12)

and upon changing the coordinate system from t to θ by utilizing Eq. 6, we obtain

dθ =
√

C ′dr

r2
√

E + A′/r5 − B ′/r11 − C ′/r2
. (13)
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We can simplify the above equation by making the substitution u = r−1, and by
integrating both sides of Eq. 13 to yield

θ − θ0 = −
∫ √

C ′du√
E − B ′u11 + A′u5 − C ′u2

. (14)

Unlike the classical two-body problem, for which the polynomial under the square root
is a quadratic, in this case the polynomial under the square root has a maximum degree
of 11, which makes the integration much harder to effect in terms of well-known spe-
cial functions. Thus, some numerical and perturbation methods are presented in order
to gain some physical insight into this problem. The atom’s orbiting circular radius
can be readily computed by finding the minimum energy configuration of the effective
potential energy. Since, there is a one-to-one relationship between its circular orbiting
radius and its circular orbiting frequency (15), in the following subsection the circular
orbiting frequency of this system is estimated and it is found to be operating in the
gigahertz range.

3.1 Circular orbiting frequency of atom–carbon nanotube system

In this section, the circular orbiting frequency of an atom orbiting around a carbon
nanotube is estimated by examining the minimum energy configuration of the effective
potential energy, since it can be shown from classical mechanics that the minimum
energy configuration of Eq. 11 corresponds to a circular orbit of the atom. By solving
V ′

e f f (r) = 0, the circular angular frequency, ω, is given by

ω2 = 5A′

m R7 − 11B ′

m R13 , (15)

where R is the atom’s circular orbiting radius. In order to obtain Eq. 15, the conser-
vation of angular momentum of the system is utilized. Note that Eq. 15 by itself is
not sufficient to determinate the circular orbiting frequency of the atom. However, the
stability of a nearly circular orbit and the boundness of the atom’s locus at R have to
be satisfied for the atom to keep orbiting in its circular orbit. To determine the stability
of the atom’s circular orbit, differentiating both sides of Eq. 12 with respect to t , yields

mr̈ +
(

−2C ′

r3 + 5A′

r6 − 11B ′

r12

)
= 0, (16)

so that upon making the substitution u = 1/r , we get

d2u

dθ2 − m

h2 (5A′u4 − 11B ′u10 − 2C ′u) = 0. (17)
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Now we consider the substitution u = 1/R + ε, where ε is an infinitesimal quantity,
so that Eq. 16 gives

d2ε

dθ2 − m

h2

(
20A′

R3 − 110B ′

R9 − 2C ′
)

ε = 0. (18)

For ε to be convergent, it is obvious that the following inequality has to be satisfied
2C ′ R9 − 20A′ R6 + 110B ′ > 0, where from the definition of C ′ and the conservation
of angular momentum of the system, we find R < (33B ′/5A′)1/6. In addition, the
boundness of the atom at r = R or Vef f < 0 has to be checked. From Eq. 11, this
gives the following condition

C ′

R2 − A′

R5
+ B ′

R11 < 0 ⇒ R <

(
3B ′

A′

)1/6

. (19)

Therefore, R must satisfy the following criteria for the atom orbiting in its stable and
bounded circular orbit

R < min

{(
33B ′

5A′

)1/6

,

(
3B ′

A′

)1/6
}

=
(

3B ′

A′

)1/6

≈ 3.8 Å. (20)

Upon taking R = 3.8 Å, the circular orbiting frequency can be estimated to be
f = 29 GHz by utilizing Eq. 15. Given the circular orbiting frequency, the angular
kinetic energy can be easily calculated as 0.074/r2 eV by fixing the angular momen-
tum of the system h = 5.4 × 10−14 kg m2s−1, and the effective potential energy Vef f

can then be computed by incorporating the angular kinetic energy. For comparison,
we plot the angular kinetic energy, the molecular potential energy and the effective
potential energy, as shown in Fig. 2. The effective potential energy of this system is
found to resemble classical planetary motion and all possible classifications of the
atom’s loci can be explained in terms of its total energy. Note that the circular orbiting
radius R, estimated in Eq. 20, agrees with the value of R suggested from Fig. 2. For
an atom to stay orbiting in its circular orbit, the total energy must be equal to the
minimum energy configuration of the effective potential energy Vef f , namely

E = B ′

R11 − A′

R5
− C ′

R2 ≈ −1.14 meV. (21)

3.2 Numerical locus for atom–carbon nanotube system

In this section, numerical solutions for the loci of Eq. 14 is determined. For a given
value of angular momentum of the system h, we examine the conditions for which the
atom’s orbit is either bounded or unbounded. From Eq. 14, we have

du

dθ
= ±

√
E − B ′u11 + A′u5 − C ′u2

√
C ′ , (22)
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so that if we discretize a complete revolution into N grid points then a first order
numerical scheme, utilizing Euler’s method [18], is given by

ui+1 = ui ± ε

√
E − B ′u11

i + A′u5
i − C ′u2

i√
C ′ , (23)

where i ∈ [1, N ], ε = 2π/N and N is the total number of grid points. For Eq. 23 to
have real solutions, E ≥ B ′u11

i − A′u5
i + C ′u2

i is required to be satisfied for all i . In
particular, when E = B ′u11

0 − A′u5
0 + C ′u2

0, ui+1 = ui for all i and this corresponds
to a circular orbit. The constant C ′ is taken to be 0.074 and this numerical scheme is
carried out for different values of the total energy E .

In this paper, unless otherwise stated, we apply the numerical scheme to 20 revo-
lutions of the orbiting atom, where 100 grid points are utilized. Owing to the feature
of the effective potential energy in Fig. 2, one dip and one crest are observed, where
the crest’s tail goes to infinity. Therefore, we consider E = −1.14, −0.6, 0, 0.5 and
1.1 meV, where −1.14 meV is the value of E at the dip of Vef f , −0.6 meV is the
mid-point between 0 eV and the dip, 0.5 meV is the mid-point between the crest and
the zero potential and 1.1 meV is the crest’s energy. For a given total energy E , fea-
sible initial positions are determined utilizing the expression E = (1/2)mv2 + Vef f ,
for which the velocity is real if and only if E ≥ Vef f . The numerical outcomes are
presented below with physical explanations.
Case 1 (E = −1.14 meV): In this case (see Fig. 3), the only possible initial position
r0 is the atom’s own circular orbit, which is equal to R = 3.8 Å. All other values of
r0 gives rise to E < Vef f , which is not physically feasible.
Case 2 (E = −0.6 meV): In this case, possible initial positions r0 lie between 3.58 and
4.191 Å, which are determined numerically by solving r from Vef f = −0.6. An orbit
with this total energy is clearly bounded between 3.58 and 4.191 Å, which corresponds
to an elliptic orbit (where here we define an elliptic orbit to be an orbit that is bounded
by two different radii). Therefore, three initial positions, namely 3.6, 3.8 and 4 Å have
been examined (see Fig. 4). From the figure, it is clear that any carbon atom with
this total energy departs from its initial positions and then oscillates between the two

Fig. 3 Locus for
E = −1.14 meV with initial
position 3.8 Å. Atom is orbiting
in its stable circular orbit
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Fig. 4 Loci for E = −0.6 meV with initial positions 3.6, 3.8 and 4 Å from left to right respectively. Atom
is bounded between 3.58 and 4.191 Å for all these initial positions
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Fig. 5 Loci for E = 0 eV with initial positions 3.6, 3.8 and 4 Å from left to right respectively. Atom is
swirling away from its bounded loci gradually for all these initial positions

boundaries r = 3.58 and r = 4.191 Å, which indicates that the molecular potential
energy is strong enough to hold the atom in a bounded orbit but weak enough to keep
it in a stable circular orbit.
Case 3 (E = 0 eV): In this case, r0 lies between 3.504 and 4.509 Å. Unlike the pre-
vious cases, orbiting motion involving this energy level are bounded but unstable,
owing to the fact that a point at infinity is also an initial accessible point. This form
of locus corresponds to a parabolic orbit (where here we define a parabolic orbit to
be an orbit such that an atom orbits to the outer-shell radius and then swirls away to
infinity gradually). Similar to the second case, 3 initial positions have been chosen
to examine, namely 3.6, 3.8 and 4 Å (see Fig. 5). It is clear that an atom will move
away from its initial positions to the outer boundary r = 4.509 Å and then gradually
swirls away to infinity.
Case 4 (E = 0.5 meV): In this case, r0 lies between 3.46 and 4.86 Å and between
11.765 Å and infinity. In particular, the boundness of an atom’s orbit depends heav-
ily on its initial positions r0. If 3.46 Å ≤ r0 ≤ 4.86 Å, its locus is elliptic, which is
bounded, while if r0 ≥ 11.765 Å, its locus is a hyperbolic orbit (where here we define
a hyperbolic orbit to be an orbit such that an atom swirls away from the nanotube
quickly), which is unbounded. Four initial positions, namely 3.6, 3.8, 4 and 12 Å,
have been examined (see Figs. 6 and 7). For r0 = 3.6, 3.8, 4 Å, an atom departs
from its initial positions and then oscillates between the two boundaries r = 3.46
and r = 4.86 Å. However, for r0 = 12 Å, the numerical scheme is unstable, even in
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Fig. 6 Loci for E = 0.5 meV with initial positions 3.6, 3.8 and 4 Å from left to right respectively. Atom
is oscillating between r = 3.46 Å and r = 4.86 Å for all these initial positions

Fig. 7 Locus for E = 0.5 meV
with initial position 12 Å. Atom
escapes from its initial position
to infinity very quickly
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the third revolution, which indicates that the molecular potential energy is too weak
to hold the atom in a bounded orbit and the atom escapes from its initial position to
infinity quickly.
Case 5 (E = 1.1 meV): In this case, r0 ≥ 3.42 Å and the atom’s locus is an hyperbola,
which is unbounded. Two initial positions, namely 3.8 and 10 Å, have been examined
(see Fig. 8). For r0 = 3.8 Å, the numerical scheme becomes unstable after 10 revo-
lutions, while for r0 = 10 Å the numerical scheme becomes unstable even after two
revolutions. Therefore, the atom swirls away from its initial position to infinity for all
accessible initial positions.

3.3 Perturbation solution for atom–carbon nanotube system

We suppose that an atom is introduced from infinity to a regime, where the attractive
forces dominate. This assumption is particularly valid when the 6–12 Lennard–Jones
potential is replaced by the hard-sphere repulsive potential given by Hirschfelder et al.
[19], namely

V (ρ) =
{

− D
ρ6 r > σ,

∞ r ≤ σ,
(24)
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Fig. 8 Loci for E = 1.1 meV with initial positions 3.8 and 10 Å from left to right respectively. Atom
escapes from its initial position to infinity very quickly for all these initial positions

where D and σ are the modified attractive constant and the collision diameter respec-
tively. At infinity, the total energy is simply equal to the atom’s kinetic energy, and this
initial energy helps the atom to gain its initial angular momentum orbiting around the
carbon nanotube. According to this assumption, the total energy can be represented
by E = E0 + εE1 + ε2 E2 + · · · , where E0 is approximately zero, and ε is a small
positive quantity. Initially, only E = 0 is considered, so that Eq. 14 gives

dθ = −√
C ′ du√

A′u5 − C ′u2
. (25)

It is interesting to note that the above equation is integrable and from [20], Eq. 25 can
be integrated to yield

r =
(

A′

C ′

)1/3

cos2/3
[

3

2
(θ − θ0)

]
, (26)

where θ0 is an initial angle and r results from the substitution u = 1/r . Equation 26
suggests that without the initial energy, the atom is captured by the Lennard–Jones
potential from infinity. After it encounters a repulsive potential barrier, which is located
at the center of the nanotube, it bounces back to an amplitude of (A′/C ′)1/3. Once
there, the atom is re-captured by the attractive molecular potential energy and this
process repeats periodically and endlessly. The graph of Eq. 26 is plotted in Fig. 9. We
note that in Eq. 25, the repulsive energy is ignored. If it is included, r will not reach
the center of the carbon nanotube as suggested by Eq. 26 and Fig. 9. Instead, the atom
will start to bounce back when it enters the repulsive region of the carbon nanotube.

Now, we construct a small perturbation, i.e. E = εE1 + O(ε2), so that from Eq. 14
we find
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Fig. 9 Orbiting path described
by Eq. 26
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dθ = −√
C ′ du√

εE1 + A′u5 − C ′u2

≈ −
√

C ′
A′

{
du

u
√

u3 − ξ3
− εE1

2

du

u3(u3 − ξ3)3/2

}
, (27)

where ξ = (C ′/A′)1/3. Next, we transform Eq. 27 by making dθ = θ f − θi and
du = u f − ui , where θi , ui , θ f and u f denote the initial angle, the initial radius, the
final angle and the final radius, respectively. After some manipulation, we find that
the evolution equation for r , is given by

r f = H(ui , E1)ri , (28)

where H(ui , E1)denotes	(ui , E1)/(	(ui , E1)−δ) and the expressions for	(ui , E1)

and δ are

	(ui , E1) = 1√
u3

i − ξ3
− εE1

2

1

u2
i (u

3
i − ξ3)3/2

=
√

A′
C ′ (θ f − θi ) > 0. (29)

We note that when 	(ui , E1) = δ/2, |H(ui , E1)| = 1, the atom always stays on
the circular orbit. If |H(ui , E1)| > 1, then the atom moves away from the carbon
nanotube, while if |H(ui , E1)| < 1, then the atom moves towards the carbon nano-
tube. It can be easily shown that |H(ui , E1)| > 1 is satisfied whenever 	(ui , E1) > 0,
except for the case of 	(ui , E1) = δ/2, whereas |H(ui , E1)| < 1 is satisfied whenever
	(ui , E1) < 0. Given that, we can determine the minimum circular energy ER by
solving 	(ui , Ec) = δ/2 and the cut-off energy Ec by solving 	(ui , Ec) = 0, thus

Ec = −2u2
i

ε
(ξ3 − u3

i ), ER = Ec − δu2
i (u

3
i − ξ3)3/2

ε
. (30)

It is interesting to note that ER < Ec. For simplicity, we assume here that E1, Ec

and ER are all negative real numbers. However, this cut-off energy is not sufficient to
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determine the atom’s loci. For example, if E1 > Ec, then |H(ui , E1)| > 1 follows.
But, it is naive to think that r will always keep increasing, which corresponds to either
a parabolic or a hyperbolic orbit. An increment in r may also increase the value of Ec

if and only if ui < (2/5)1/3ξ . Assuming that the value of E1 is sufficiently small such
that E1 falls below Ec, then |H(ui , E1)| < 1 occurs and the atom will start to move
towards the carbon nanotube, which corresponds to an elliptic orbit. Hence, both the
initial position and the initial total energy are paramount to determine the atom’s loci.
Note that in this section, we investigate only a qualitative description of the atom’s
loci, where the full prediction of its loci can only be determined by solving Eq. 14.

4 Fullerene–carbon nanotube system

In this section, we determine the loci of a fullerene C60 orbiting around a (6,6) carbon
nanotube of infinite length. To obtain the interaction potential energy between the
two molecules, we perform double integrals of the Lennard–Jones potential over the
surface of the fullerene and the carbon nanotube. In addition, the classical spinning of
a fullerene, which arises from atomic vibrations, is also incorporated into the model
to encapsulate the possible physical phenomenon at the nanoscale. Due to the sym-
metry of the problem, there is a radial force acting between the center of the fullerene
and the carbon nanotube, which provides a centripetal force to the fullerene moving
around the carbon nanotube, so that the fullerene eventually orbits around the center
of mass of the carbon nanotube in a perpendicular plane. Results from the previous
atom–carbon nanotube system can be employed in this system. The illustration of this
system is shown in Fig. 10, where a, b and r denote the radius of a (6, 6) carbon
nanotube, the radius of the fullerene C60 and the distance between the center of the
carbon nanotube and the center of the fullerene respectively. The molecular potential
energy of this system can be written as

V = ngn f

∫
�g

∫
� f

(
− A

ρ6 + B

ρ12

)
d� f d�g, (31)

where ng , n f and ρ denote the mean surface density of atoms on the carbon nanotube,
the mean surface density of atoms on the fullerene, and the distance between an atom
on the fullerene and an atom on the carbon nanotube, respectively. In addition, d� f

and d�g denote the surface area segments of the fullerene and the carbon nanotube,
respectively. Following Mahanty and Ninham [21] and Ruoff and Hickman [22], the
potential energy for an atom interacting with a fullerene of radius b can be deduced
as P(ρ) = −Q6(ρ) + Q12(ρ), where Qn(ρ) is defined by

Qn = 2Cnn f πb

ρ(2 − n)

{
1

(ρ + b)n−2 − 1

(ρ − b)n−2

}
, (32)

where the constants C6 and C12 denote A and B, respectively. By performing another
surface integral over the surface of the carbon nanotube, the molecular potential energy
becomes
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Fig. 10 Fullerene orbiting around a carbon nanotube

V (ρ) = nga
∫ +∞

−∞

∫ 2π

0
Pdθdz

= ngn f πab
∫ +∞

−∞

∫ 2π

0

1

ρ

(
A

2

[
1

(ρ + b)4 − 1

(ρ − b)4

]

− B

5

[
1

(ρ + b)10 − 1

(ρ − b)10

])
dθdz,

(33)

where ρ = √
λ2 + z2 and λ = √

r2 − 2ar cos θ + a2. Upon integrating Eq. 33, we
obtain

V (r) = 16ngn f πab[−A(bJ3 + 2b3 J4)

+1

5
(5bJ6 + 80b3 J7 + 336b5 J8 + 512b7 J9 + 256b9 J10)], (34)

where

Jn = (2n − 3)!!π2

(2n − 2)!!
F(n − 1/2, 1/2; 1;−4ar/[(r − a)2 − b2])

[(r − a)2 − b2]n−1/2 ,
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Fig. 11 Molecular potential energy (34) and its approximation (35) for fullerene–carbon nanotube system

and !! represents the double factorial notation such that (2n − 1)!! = (2n − 1)

(2n − 3) . . . 3 · 1 and (2n)!! = (2n)(2n − 2) . . . 4 · 2. It is easy to observe from
Eq. 34 that the molecular potential energy has a singularity at r = a + b owing to the
repulsive potential energy from the Lennard–Jones potential. The molecular potential
energy of the system is plotted in Fig. 11.

We note that the behaviour of the potential energy (34) is similar to that of the atom–
carbon nanotube system. However, the potential well is two orders of magnitude larger
than that of the atom–carbon nanotube system. This indicates that this system would
be less sensitive to any thermal fluctuations arising from the environment. It is there-
fore expected that experimentally, the orbiting behavior of a fullerene can be observed
easier than that of a single atom. Assuming that all the thermal energy, which is equal
to the potential difference between the zero potential and the dip, is converted into the
kinetic energy of the fullerene, the escape velocity is estimated to be 287.31 ms−1,
which can be achieved in laboratories by liquid helium cooling [23]. To simplify our
analysis, if a < r and only the lowest order of b is considered, then Eq. 34 reduces to
a potential form, which is similar to the atom–carbon nanotube system, namely

V (r) = − A′′

[(r − a)2 − b2]5/2
+ B ′′

[(r − a)2 − b2]11/2 , (35)

where A′′ = 6ngn f π
3ab2 A = 24 × 102 eV Å4 and B ′′ = 39.375ngn f π

3ab2

B = 0.26 × 108 eV Å10 are modified attractive and repulsive constants respectively.
As shown in Fig. 11, the approximate potential energy (35) is in good agreement with
the actual molecular potential energy (34).
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Owing to the symmetry of this problem, the results in the atom-carbon nanotube
system can be readily extended to this system by utilizing the substitution of R →√

(R − a)2 − b2. According to Eq. 20, the threshold circular orbiting radius of this
system, which is bounded and stable, is given by

√
(R − a)2 − b2 = (

3B ′′/A′′)1/6 = 5.6 Å ⇒ R = 10.7 Å. (36)

The orbiting frequency of the fullerene can be calculated utilizing Eq. 15, and is equal to
f = 4 GHz, given that the angular momentum of the system h is equal to 3.44×10−12

kg m2 s−1. In addition, the fullerene’s angular kinetic energy can be computed to be
equal to 5/r2 eV. The angular kinetic energy, molecular potential energy and effective
potential energy for a C60–carbon nanotube system are plotted together in Fig. 12 for
comparison. Since the angular kinetic energy in this system is small in comparison to
the molecular potential energy, the effective potential energy is essentially the same
as the molecular potential energy and this gives rise to a different interpretation of the
classification of loci in comparison to the atom–carbon nanotube system. In particular;

• the fullerene is in a circular orbit, which is bounded at the potential well of Vef f ,
• when the total energy of the fullerene increases but remains below 0 eV, the fuller-

ene’s locus is elliptic, which is bounded,
• when its total energy equals 0 eV, its locus is parabolic, which is unbounded,
• when its total energy becomes strictly positive, its locus is hyperbolic, which is

unbounded.
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Fig. 12 Fullerene’s angular energy, ensemble molecular energy and effective potential energy
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Finally, the classical spinning effect of the fullerene may be incorporated into the
model. Since the fullerene can spin due to the atomic vibrations at the nanoscale, the
spinning kinetic energy may be written as Iω2/2, where I = 2m1b2/3 and ω are
the moment of the inertia and the spinning frequency of the C60 molecule, respec-
tively. The presence of the spinning shifts the effective potential energy upward by the
amount of Iω2/2, however the analysis to determine the fullerene’s locus is principally
the same as shown in this paper.

5 Fullerene–fullerene system

In this section, we study the orbiting of a fullerene C60 around a fullerene C1500.
An illustration of this system is given in Fig. 13. The fullerene C1500 is chosen due to
the fact that the center of mass of this system coincides with the center of the C1500
fullerene, which therefore simplifies our calculations. The solution method for this
system is very similar to the fullerene–carbon nanotube system. However, due to the
spherical symmetry of this system, the molecular potential energy can be obtained in a
simpler manner because the axis of the line joining the centers of the two fullerenes can
be aligned with the z-axis of the larger fullerene, and the molecular potential energy
of the system becomes

V (ρ) = n1n2πb
∫

S2

1

ρ

{
A

2

[
1

(ρ + b)4 − 1

(ρ − b)4

]

− B

5

[
1

(ρ + b)10 − 1

(ρ − b)10

]}
d
2, (37)

where n1 and n2 denote the mean surface densities of atoms on the C60 and the C1500
fullerenes, respectively. By exploring the symmetry of this system, the orbital radius r

c

br z

ρ

θ

C1500 fullerene

C60 fullerene

Fig. 13 Geometry of a C60 molecule orbiting around a C1500 fullerene
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can be aligned with the z-axis of the larger fullerene C1500. Hence, from the cosine law
we have ρ = √

c2 + r2 − 2cr cos θ . By performing the integration over the surface
of C60 and C1500 fullerenes, the molecular potential energy V (ρ) becomes

V (ρ) = 2π2n1n2c2b
∫ π

θ=0

{
A

2ρ

[
1

(ρ + b)4 − 1

(ρ − b)4

]

− B

5ρ

[
1

(ρ + b)10 − 1

(ρ − b)10

]}
sin θdθ, (38)

where c denotes the radius of the C1500 fullerene and employing similar calculation
as of the fullerene–carbon nanotube system, we find

V (r) = 8n1n2π
2b2c2

[
−A

(
J3 + 2b2 J4

)
+ B

5
(5J6 + 80b2 J7 + 336b4 J8

+ 512b6 J9 + 256b8 J10)

]
, (39)

where

Jn = 1

2c(n − 1)r

{
1

[(r − c)2 − b2]n−1 − 1

[(r + c)2 − b2]n−1

}
.

The molecular potential energy is plotted as shown in Fig. 14.
We observe that this energy becomes singular at r = b + c, similar to that of the

fullerene–carbon nanotube system. Further, the circular orbiting radius in this sys-
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Fig. 14 Molecular potential energy, angular kinetic energy and effective potential energy for C60–C1500
system
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tem becomes very close to the radius obtained directly by minimizing the molecular
potential energy alone. Therefore, according to Fig. 14, the circular orbiting radius
can be readily read off as R = 24 Å and the orbiting frequency is calculated as

f = 1

2π

√
V ′(R)

m1 R
= 1.6 GHz, (40)

where m1 is the total mass of the C60 molecule. The angular kinetic energy, which
is given by 24.5/r2 eV, and the effective potential energy are plotted together with
the molecular potential energy in Fig. 14. Similar to the fullerene–carbon nanotube
system, the classical spinning effect can also be incorporated in this system and the
classification of loci can be similarly examined. This orbiting effect may be detected
experimentally since the fullerene’s escape velocity is calculated to be 365.76 ms−1.

6 Conclusion

In this paper, three two-body nanoscale problems are examined, namely an atom–car-
bon nanotube system, a fullerene–carbon nanotube system and a fullerene–fullerene
system. The effective potential energy of these proposed systems are found to be sim-
ilar to the classical planetary potential energy, which suggests that these nano-systems
possess orbiting phenomenon. The circular orbiting radii of all the proposed nano-
systems are estimated by seeking the minimum energy configuration of their effective
potential energies and a stability and a boundness analysis is performed close to a
perfect circular orbit to determine the stability of the circular orbits. Since the loci for
these nano-systems cannot be determined in terms of well-known analytical functions,
a numerical method has been employed to obtain the various loci of the orbiting paths.
In addition, a perturbation method has been utilized in order to gain some insight
into possible analytical formulations of the loci. Most importantly, the circular orbit-
ing frequencies of all three proposed nano-systems reach the gigahertz range, which
suggests that these nano-systems can be utilized as future nanoscale devices, such as
nano-motors and nano-signal generators. We comment that this paper does not incor-
porate the effect of thermal fluctuations arising from the environment, which could
certainly disrupt the orbiting behavior for such nanoscale objects.
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